
Unique Network
Release 0.0.1

unknown

Sep 06, 2021

CONTENTS

1 Contents 3
1.1 Overview . 3
1.2 Getting Started . 3
1.3 JavaScript API . 7
1.4 Unity API . 31
1.5 .NET API . 32
1.6 Wallet Integration Guide . 32

i

ii

Unique Network, Release 0.0.1

Unique Network is the new home for NFT projects.

CONTENTS 1

https://uniquenetwork.io

Unique Network, Release 0.0.1

2 CONTENTS

CHAPTER

ONE

CONTENTS

1.1 Overview

Unique Network blockchain in the Polkadot ecosystem can be seen as a foundation for standards and good practices
serving for any software that uses or relates to NFT. The core components of Unique blockchain are:

• NFT Pallet

• Ink! Smart Contracts

Like ERC-721 Ethereum standard for smart contracts, NFT Pallet provides the basement for creating collections of
NFTs, minting tokens, managing their ownership, and much more. The smart contracts module is included to handle
any application logic that is unknown at the time of chain design.

The Unique Network aims to provide the feature rich and flexible configuration experience to its users. This includes
multiple authorization levels, economic models that enable freemium application marketing, miscellaneous adminis-
tration options, advanced spam protection. The goal is to cover the broad spectrum of NFT applications’ development
needs and provide maximum flexibility at low to affordable cost.

The Unique network is based on Polkadot Substrate, and works just like any blockchain based on substrate:

• It can be explored with Apps UI: https://uniqueapps.usetech.com/

• It can be integrated with any Polkadot API, such as JavaScript, C#, C++, or Python APIs, though this documen-
tation mainly focuses on JavaScript API as the most up to date.

1.2 Getting Started

1.2.1 Creating Accounts

Unique Network, like most blockchains, is based on accounts or addresses. An address can own NFTs or some Unique
token. It can sign transactions to transfer these valuable assets to other addresses or to make some actions in Decen-
tralized Apps (dApps). For example, an address can buy and sell NFTs on the NFT Market.

The typical Unique address looks like this:

5HEfXSCByZ9jgtrfSEQNnRSgRVf4wxiTyTzBME5xsjyNqak3

One way to create an address for yourself is to use Polkadot{.js} browser extension for Chrome browser or Polkadot{.js}
browser extension for Firefox.

Once it is installed, open the Polkadot{.js} extension and create the address. The extension will display the mnemonic
seed. Make sure you save it securely because this is the only way to restore your address. This mnemonic seed can also

3

https://uniqueapps.usetech.com/
https://uniquenetwork.io
https://chrome.google.com/webstore/detail/polkadot%7Bjs%7D-extension/mopnmbcafieddcagagdcbnhejhlodfdd
https://addons.mozilla.org/en-US/firefox/addon/polkadot-js-extension/
https://addons.mozilla.org/en-US/firefox/addon/polkadot-js-extension/

Unique Network, Release 0.0.1

be used to sign transactions in JavaScript code. In the examples we use the mnemonic seed for Alice account (seed:
“//Alice”), but you can replace it with your seed to work with TestNet or MainNet.

In the next step enter the name and password for the account. The password will be needed every time when you sign
a transaction:

4 Chapter 1. Contents

Unique Network, Release 0.0.1

The new address will appear in the list:

1.2. Getting Started 5

Unique Network, Release 0.0.1

Finally, you can open the UniqueApps UI to see your address.

1.2.2 Unique TestNet Faucet

In order to get transactions working on the TestNet, you will need some TestNet tokens.

You can get them from our Telegram bot: @UniqueFaucetBot

Once the transaction is processed, you may open the UniqueApps UI to see how your address’ balance increased (make
sure the UI is connected to the TestNet in settings page).

6 Chapter 1. Contents

https://polkadot.js.org/apps/?rpc=wss%3A%2F%2Ftestnet2.uniquenetwork.io#/accounts
https://t.me/unique2faucetbot
https://uniqueapps.usetech.com/#/accounts

Unique Network, Release 0.0.1

1.3 JavaScript API

1.3.1 Polkadot JS API

The Polkadot JS API is a constantly developed API for integration with Substrate based blockchains, which is main-
tained by Parity Inc.

This documentation does not focus on general features of this API, but mainly on using this API for integration with
features of Unique Blockchain.

1.3.2 Installation

The Polkadot JS API is available as an npm package and can be included in package.json file as:

"@polkadot/api": "2.9.1",

1.3.3 Examples

The examples are provided for this documentation in the examples folder. In order to execute them, install NodeJS 15,
clone this repository and run an example (e.g. connect.js):

cd examples
npm install
node connect.js

1.3.4 Opening Connection

The Unique Network maintains public blockchain nodes to be used by clients for free. In order to connect to a client,
you will need the public node URL and runtime types file that is located at https://github.com/UniqueNetwork/nft_
parachain/runtime_types.json.

The public node URL depends on the network that you would like to connect to:

Network URL
TestNet 1.0 wss://unique.usetech.com
TestNet 2.0 wss://testnet2.uniquenetwork.io
MainNet Coming soon. . .

Once you’ve got all parameters, connect to the node like this:

const { ApiPromise, WsProvider, Keyring } = require('@polkadot/api');
const rtt = require("./runtime_types.json");

const wsProvider = new WsProvider(public_node_url);

// Create the API and wait until ready
const api = await ApiPromise.create({

provider: wsProvider,
types: rtt

});

1.3. JavaScript API 7

https://polkadot.js.org/docs/api/
https://github.com/UniqueNetwork/unique-docs/tree/master/examples/
https://github.com/UniqueNetwork/nft_parachain/runtime_types.json
https://github.com/UniqueNetwork/nft_parachain/runtime_types.json

Unique Network, Release 0.0.1

1.3.5 Collection Management

Collection Properties

The following query can be used to get collection state:

await api.query.nft.collection(collectionId);

which returns an object like the following (for an NFT collection taken as example):

{
Owner: 5GrwvaEF5zXb26Fz9rcQpDWS57CtERHpNehXCPcNoHGKutQY,
Mode: {

NFT: null
},
Access: Normal,
DecimalPoints: 0,
Name: [

110,
97,
109,
101,
0

],
Description: [

100,
101,
115,
99,
114,
105,
112,
116,
105,
111,
110,
0

],
TokenPrefix: 0x70726566697800,
MintMode: false,
OffchainSchema: ,
SchemaVersion: ImageURL,
Sponsor: 5C4hrfjw9DjXZTzV3MwzrrAr9P1MJhSrvWGWqi1eSuyUpnhM,
SponsorConfirmed: false,
Limits: {

AccountTokenOwnershipLimit: 10,000,000,
SponsoredMintSize: 4,294,967,295,
TokenLimit: 4,294,967,295,
SponsorTimeout: 14,400

},
VariableOnChainSchema: ,
ConstOnChainSchema:

}

8 Chapter 1. Contents

Unique Network, Release 0.0.1

Fields
• Owner - Collection owner

• Mode - type of collection (NFT, Fungible (ERC-20), or ReFungible)

• Access - Normal (for public access) or WhiteList (for restricted access)

• DecimalPoints - Number of decimal digits for value (only for Fungible collections)

• Name - Collection name (up to 64 UTF-16 characters)

• Description - Collection description (up to 256 UTF-16 characters)

• TokenPrefix - Token name as displayed in wallets (up to 16 UTF-8 characters)

• MintMode - True, if anyone is allowed to mint. False otherwise. See setMintPermission

• SchemaVersion - see Data Schema

• OffchainSchema - see Data Schema

• VariableOnChainSchema - see Data Schema

• ConstOnChainSchema - see Data Schema

• Sponsor - see Ecomonic Models

• SponsorConfirmed - see Ecomonic Models

• Limits - see setCollectionLimits

createCollection

Description
This method creates a Collection of NFTs. Each Token may have multiple properties encoded as an array of bytes of
certain length. The initial owner and admin of the collection are set to the address that signed the transaction. Both
addresses can be changed later.

Permissions
• Anyone

Parameters
• collectionName: UTF-16 string with collection name (limit 64 characters)

• collectionDescription: UTF-16 string with collection description (limit 256 characters)

• tokenPrefix: UTF-8 string with token prefix, limit 16 characters

• collectionType:

– 0 - Invalid (collection does not exist, if type is 0)

– 1 - NFT. All items in ItemList are unique and indivisible (decimalPoints parameter must be 0). Item IDs
are unique, and one item may only be owned by one address.

– 2 - Fungible. Collection does not have custom data associated with token (custom data size parameter must
be 0). All Item IDs are the same and all that is recorded in ItemList in value field is the owner address and
owned amount. The value is fixed point decimal with decimalPoints set as in the parameter to this method.

– 3 - Re-Fungible. Custom data is allowed, but Items IDs are not unique. One item may be owned by more
than one address. Value in ItemList entry corresponds to the owned portion of token. Value is an integer
number and corresponds to the number of owned pieces.

1.3. JavaScript API 9

Unique Network, Release 0.0.1

• decimalPoints: Decimal points to be used in token amounts. If set to 0, tokens are indivisible.

Events
• CollectionCreated

– CollectionID: Globally unique identifier of newly created collection.

– Owner: Collection owner

Code example:

await api.tx.nft.createCollection();

More complete examples can be found here: https://github.com/UniqueNetwork/unique-docs/blob/master/examples/
token_management.js

changeCollectionOwner

Description
Change the owner of the collection

Permissions
• Collection Owner

Parameters
• CollectionId - ID of the collection to change owner for

• NewOwner - new collection owner

destroyCollection

Description
DANGEROUS: Destroys collection and all NFTs within this collection. Users irrecoverably lose their assets and may
lose real money.

Permissions
• Collection Owner

Parameters
• CollectionId - ID of the collection to destroy

setVariableMetaData

Description
Update token custom data (the changeable part).

Permissions
Permissions (whether a user can change this metadata) are set by setmetadataupdatepermissionflag method. The default
is:

• Collection Owner

• Collection Admin

10 Chapter 1. Contents

https://github.com/UniqueNetwork/unique-docs/blob/master/examples/token_management.js
https://github.com/UniqueNetwork/unique-docs/blob/master/examples/token_management.js

Unique Network, Release 0.0.1

• Current NFT Owner

Parameters
• CollectionID: ID of the collection

• ItemID: ID of NFT to set metadata for

addCollectionAdmin

Description
NFT Collection can be controlled by multiple admin addresses (some which can also be servers, for example). Admins
can issue and burn NFTs, as well as add and remove other admins, but cannot change NFT or Collection ownership.

This method adds an admin of the Collection.

Permissions
• Collection Owner

• Collection Admin

Parameters
• CollectionID: ID of the Collection to add admin for

• Admin: Address of new admin to add

removeCollectionAdmin

Description
Remove admin address of the Collection. An admin address can remove itself. List of admins may become empty, in
which case only Collection Owner will be able to add an Admin.

Permissions
• Collection Owner

• Collection Admin

Parameters
• CollectionID: ID of the Collection to remove admin for

• Admin: Address of admin to remove

setPublicAccessMode

Description
Toggle between normal and white list access for the methods with access for “Anyone”.

Permissions
Collection Owner

Parameters
• CollectionID: ID of the Collection to remove admin for

• Mode

1.3. JavaScript API 11

Unique Network, Release 0.0.1

– 0 = Normal

– 1 = White list

addToWhiteList

Description
Add an address to white list.

Permissions
• Collection Owner

• Collection Admin

Parameters * CollectionID: ID of the Collection * Address

removeFromWhiteList

Description
Remove an address from white list.

Permissions
• Collection Owner

• Collection Admin

Parameters
• CollectionID: ID of the Collection

• Address

setMintPermission

Description
Allows Anyone to create tokens if:

• White List is enabled, and

• Address is added to white list, and

• This method was called with True parameter

Permissions
• Collection Owner

Parameters
• CollectionID: ID of the Collection to add admin for

• MintPermission: Boolean parameter. If True, allows minting to Anyone with conditions above.

12 Chapter 1. Contents

Unique Network, Release 0.0.1

setCollectionLimits

Description
Sets some collection limits and starts enforcing them immediately (with no exception for collection owner or admins).
By default the collection limits are not set, so for example, the number of items that an addres can own is not limited.
When the limits are set, the current number of owned items will be checked, and if it already exceeds the limit, the
transaction will fail. After the limits are set, they start being enforced.

Note that some bounds are also set by the global chain limits (see setChainLimits). The more restrictive limits will
always apply.

• AccountTokenOwnershipLimit - Maximum number of tokens that one address can own. Default value is the
maximum value of 10,000,000,000,000. When the number of tokens owned by a single address reaches this
number, no more tokens can be transferred or minted to this address.

• SponsoredMintSize - maximum byte size of custom NFT data that can be sponsored when tokens are minted in
sponsored mode. If the amount of custom data is greater than this parameter when tokens are minted, then the
transaction sender will pay transaction fees when minting tokens.

• TokenLimit - total amount of tokens that can be minted in this collection. Default value is the maximum value of
10,000,000,000,000. When the limit is set, the NFT pallet will check if the number of minted tokens is less or
equal than the parameter value. If the number of minted tokens is greater than this number, the transaction will
fail. This limit is designed to feacilitate token scarcity. So, it can only be set to a lower value than previous (or
if previous value is default).

• SponsorTimeout - Time interval in blocks that defines once per how long a non-privileged user transfer or
mint transaction can be sponsored. Default value is 14400 (24 hrs), allowed values are from 0 (not limited)
to 10,368,000 (1 month).

• OwnerCanTransfer - Boolean value that tells if collection owner or admins can transfer or burn tokens owned by
other non-privileged users. This is a one-way switch: If it is ever disabled (set to false), it cannot be re-enabled
(set back to true).

• OwnerCanDestroy - Boolean value that tells if collection owner can destroy it. This is a one-way switch: If it is
ever disabled (set to false), it cannot be re-enabled (set back to true).

• VariableMetaDataSponsoringRateLimit - Time interval in blocks that defines once per how long a non-privileged
user transaction to update variable metadata can be sponsored. Default value is 0 (never sponsored), allowed
values are from 0 (never sponsored) to 10,368,000 (1 month).

Permissions
• Collection Owner

Parameters
• collectionId: ID of the collection to set limits for

• CollectionLimits structure (see the description of fields above)

1.3. JavaScript API 13

Unique Network, Release 0.0.1

setTransferEnabledFlag

Description
Enable or disable transfers in a collection.

Permissions
• Collection Owner

Parameters
• CollectionID: ID of the Collection to add admin for

• TransferFlag: Boolean parameter. If True, allows transfers, otherwise token transfers are frozen

setMetadataUpdatePermissionFlag

Description
Set the permissions for token metadata updates. By default, the variable NFT metadata can be updated by a user who
owns the token, but this behavior can be changed and set to one of the following:

• Item_owner: Default, user who owns the token.

• Admin: Only collection owner and admins can change variable metadata. A smart contract may also be made
an admin in order to change token properties trustlessly.

• None: Nobody can update veriable metadata, including the token and collection owner. This option is irre-
versible. Once it is set, the variable token metadata becomes permanent in this collection.

Permissions
• Collection Owner

Parameters
• CollectionID: ID of the Collection to add admin for

• PermissionFlag: Permission flag, see description above

1.3.6 Token Management

createItem (Mint)

Description
This method creates a concrete instance of NFT, Fungible, or ReFungible Collection created with createCollection
method.

Permissions
• Collection Owner

• Collection Admin

• Anyone, if

– White List is enabled, and

– Address is added to white list, and

– MintPermission is enabled (see setMintPermission method)

14 Chapter 1. Contents

Unique Network, Release 0.0.1

Parameters
• CollectionID: ID of the collection

• Owner: Address, initial owner of the token

• Properties: Depends on collection type

– NFT: Arrays of bytes that contain NFT properties. Since NFT Module is agnostic of properties’ meaning,
it is treated purely as an array of bytes.

∗ const_data: Immutable properties

∗ variable_data: Mutable properties

– Fungible: Amount to create (multiplied by 10 to the decimalPoints power. E.g. if decimalPoints equals 2,
number 301 creates 3.01 tokens)

– ReFungible:

∗ const_data: Immutable properties

∗ variable_data: Mutable properties

∗ pieces: Number of pieces this token is divided into

Events
• ItemCreated

– CollectionID: ID of collection

– ItemId: Depends on the collection type:

∗ NFT: Identifier of newly created NFT. which is unique within the Collection, so the NFT is uniquely
identified with a pair of values: CollectionId and ItemId.

∗ Fungible: Item IDs are not used, so the value is just 0

∗ ReFungible: Same as NFT

– Recipient: Address that receives token

Code example:

const nftItemId = await createItem(
api,
alice,
nftCollectionId,
// Token receiver
alice.address,
{
nft: {

// Arbitary data assigned to token
const_data: [1, 2, 3, 4],
// Variable data can be set later with setVariableMetadata
variable_data: [1, 2, 3, 4],

},
}

);

More complete examples can be found here: https://github.com/UniqueNetwork/unique-docs/blob/master/examples/
token_management.js

1.3. JavaScript API 15

https://github.com/UniqueNetwork/unique-docs/blob/master/examples/token_management.js
https://github.com/UniqueNetwork/unique-docs/blob/master/examples/token_management.js

Unique Network, Release 0.0.1

createMultipleItems

Description
This method creates multiple instances of NFT, Fungible, or ReFungible Collection created with createCollection
method.

Permissions
• Collection Owner

• Collection Admin

• Anyone, if

– White List is enabled, and

– Address is added to white list, and

– MintPermission is enabled (see setMintPermission method)

Parameters
• CollectionID: ID of the collection

• Owner: Address, initial owner of all tokens created in this transaction

• Items: Array of items to create. Each single item is described by properties as in `createItem`_ method

Events
One ItemCreated event is emitted for each created token

• ItemCreated
– CollectionID: ID of collection

– ItemId: Depends on the collection type:

∗ NFT: Identifier of newly created NFT. which is unique within the Collection, so the NFT is uniquely
identified with a pair of values: CollectionId and ItemId.

∗ Fungible: Item IDs are not used, so the value is just 0

∗ ReFungible: Same as NFT

burnItem

Description
This method destroys a concrete instance of NFT.

Permissions
• Collection Owner

• Collection Admin

• Current NFT Owner

Parameters
• CollectionID: ID of the collection

• ItemID: ID of NFT to burn

– Non-Fungible Mode: Required

16 Chapter 1. Contents

Unique Network, Release 0.0.1

– Fungible Mode: Ignored

– Re-Fungible Mode: Required

• Value: Amount to burn

– Non-Fungible Mode: Ignored (only the whole token can be burned)

– Fungible Mode: Must specify transferred amount

– Re-Fungible Mode: Ignored (the owned portion is burned completely)

Events
• ItemDestroyed

– CollectionID: ID of collection

– ItemId: Identifier of burned NFT

Code example:

await burnItem(api, alice, nftCollectionId, nftItemId, 1);

More complete examples can be found here: https://github.com/UniqueNetwork/unique-docs/blob/master/examples/
token_management.js

Getting Token Information

In order to get the NFT or Re-fungible token information, one should use

• api.query.nft.nftItemList query for Non-Fungible items

• api.query.nft.reFungibleItemList query for Re-Fungible items

Parameters
• CollectionID: Id of collection

• ItemID: token Id

The API will return the JSON structure in the following format that contains

{
Collection: 4,
Owner: 5FZeTmbZQZsJcyEevjGVK1HHkcKfWBYxWpbgEffQ2M1SqAnP,
Data: 0x0001000311ffffffffffffffffffffffffffffff

}

1.3.7 Token Ownership and Transfers

This group of methods allows managing NFT ownership.

1.3. JavaScript API 17

https://github.com/UniqueNetwork/unique-docs/blob/master/examples/token_management.js
https://github.com/UniqueNetwork/unique-docs/blob/master/examples/token_management.js

Unique Network, Release 0.0.1

Getting BalanceOf

In order to get the NFT or Re-fungible balance for an address, one should use api.query.nft.balance

Parameters
• CollectionID: Id of collection

• AccountId: user address

Getting Address Tokens

In order to get the list of NFT or Re-fungible tokens that are owned by a single address, one should use
api.query.nft.addressTokens

Parameters
• CollectionID: Id of collection

• AccountId: user address

Transfer Checks

This algorithm is used to check if the address can transfer, approve, transferFrom, and burn a token:

1. Check ownership and/or approvals (If not -> Error. If yes -> go next.)

1. Transfer, Approve, and Burn: Check if the sender owns the token, or

2. TransferFrom: Check if the sender is approved to transfer this token. Collection Owner, Admins, and this
token owner are always approved.

2. Check if the sender is the collection owner or an admin. If yes -> Allow transaction, no extra checks needed. If
no -> go next.

3. Check if White List mode is enabled. If no -> Allow transaction, no extra checks needed. If yes -> go next.

4. Check if the sender is in the white list. If yes -> Allow transaction, no extra checks needed. If no -> Error.

transfer

Description
Change ownership of the token.

Permissions
• Collection Owner

• Collection Admin

• Current NFT owner

Parameters
• Recipient: Address of token recipient

• CollectionId: ID of collection

• ItemId: ID of the item

– Non-Fungible Mode: Required

18 Chapter 1. Contents

Unique Network, Release 0.0.1

– Fungible Mode: Ignored

– Re-Fungible Mode: Required

• Value (Optional): Amount to transfer

– Non-Fungible Mode: Ignored

– Fungible Mode: Must specify transferred amount

– Re-Fungible Mode: Must specify transferred portion (between 0 and 1)

Events
• Transfer

– Collection ID

– Token ID

– Sender address

– Recipient address

– Amount (always 1 for NFT)

transferWithData (not yet available)

Description
This ERC-721 compatibility method is not yet implemented.

Same as Transfer with extra parameter: Data, an array of bytes. Data will be emitted in an event.

Permissions
Same as transfer

Parameters
• Recipient: Address of token recipient

• CollectionId: ID of collection

• ItemId: ID of the item

• Data: Data to be included in the transaction

transferFrom

Description
Change ownership of a NFT on behalf of the owner. See Approve method for additional information. After this method
executes, the approval is removed so that the approved address will not be able to transfer this NFT again from this
owner.

Permissions
• Collection Owner

• Collection Admin

• Current NFT owner

• Address approved by current NFT owner

1.3. JavaScript API 19

Unique Network, Release 0.0.1

Parameters
• Sender: Address that owns token

• Recipient: Address of token recipient

• CollectionId: ID of collection

• ItemId: ID of the item

Events
• Transfer

– Collection ID

– Token ID

– Sender address

– Recipient address

– Amount (always 1 for NFT)

transferFromWithData (not yet available)

Description
This ERC-721 compatibility method is not yet implemented.

Same as TransferFrom with extra parameter: Data, an array of bytes. Data will be emitted in an event.

Permissions
Same as TransferFrom

Parameters
• Sender: Address that owns token

• Recipient: Address of token recipient

• CollectionId: ID of collection

• ItemId: ID of the item

• Data: Data to be included in the transaction

approve

Description
Set, change, or remove approved address to transfer the ownership of the token. The Amount value must be between 0
and owned amount or 1 for NFT.

Permissions
• Collection Owner

• Collection Admin

• Current NFT owner

Parameters
• Spender: Address that is approved to transfer this token

20 Chapter 1. Contents

Unique Network, Release 0.0.1

• CollectionId: ID of collection

• ItemId: ID of the item

• Amount:

– Non-Fungible Mode: Required, must be 1 (for approval) or 0 (for disapproval).

– Fungible Mode: Required, amount to add to approved amounts for the Spender or 0 (to remove approvals)

– Re-Fungible Mode: Required, amount to add to approved amounts for the Spender or 0 (to remove ap-
provals)

Events
• Approved

– Collection ID

– Token ID

– Sender address

– Spender address

– Amount (always 1 for NFT)

setApprovalForAll (not yet available)

Description
This ERC-721 compatibility method is not yet implemented.

Sets or unsets the approval of a given address (operator). An operator is allowed to transfer all tokens of the sender on
their behalf. Unlike single approvals, approvals granted using this method don’t reset after transfers.

Permissions
• Collection Owner

• Collection Admin

• Current NFT owner

Parameters
• CollectionId: ID of the collection

• Approved: True or False

Getting Approvals

The current approvals may be read with api.query.nft.approvedList. It returns the list of addresses, approved for the
given token.

Parameters
• CollectionId: ID of collection

• ItemId: ID of the item

1.3. JavaScript API 21

Unique Network, Release 0.0.1

batchTransfer

This is an ERC-1155 compatibility method. Not implemented yet

batchApproval

This is an ERC-1155 compatibility method. Not implemented yet

batchTransferFrom

This is an ERC-1155 compatibility method. Not implemented yet

safeBatchTransfer

This is an ERC-1155 compatibility method. Not implemented yet

safeBatchTransferFrom

This is an ERC-1155 compatibility method. Not implemented yet

1.3.8 Data Schema

setSchemaVersion

Description
Set schema standard to one of:

• ImageURL (Image URL only, just like in TestNet 1.0)

• Unique

• OpenSea

• Tezos TZIP-16 (https://gitlab.com/tzip/tzip/-/blob/master/proposals/tzip-16/tzip-16.md)

The data schema is used by NFT wallets in order to display the token metadata, as well as offchain token data (such as
images, etc.) correctly in the wallet. Unique Wallet currently supports ImageURL and Unique formats.

Image URL
This schema format assumes saving the image URL template in constOnChainSchema. The image template allows NFT
wallets to reconstruct the full image URL for each token using its ID. The URL template can contain {id} placeholder
that will be replaced with the actual token ID when the image URL is reconstructed.

Example:

https://ipfs-gateway.usetech.com/ipns/QmaMtDqE9nhMX9RQLTpaCboqg7bqkb6Gi67iCKMe8NDpCE/
→˓images/punks/image{id}.png

Unique
The Unique format allows NFT wallets to decode on-chain token metadata and access off-chain data. This format is
currently evolving and may update in the future. It supports three schemas: constant on-chain, variable on-chain, and
off-chain. The schema is the JSON string that contains information about how to access and decode token metadata.

22 Chapter 1. Contents

https://gitlab.com/tzip/tzip/-/blob/master/proposals/tzip-16/tzip-16.md
https://uniqueapps.usetech.com/#/nft

Unique Network, Release 0.0.1

In case of off-chain metadata, the data is accessed at a 3rd party or an IPFS URL. URLs may contain the {id} placeholder
that will be replaced by the wallet in order to reconstruct the URL for that resource. Currently the Unique Wallet only
supports “metadata” entry (just like in the example below). The JSON object returned by the metadata endpoint must
contain “image” key with image URL value.

In case of on-chain metadata, the data is binary (i.e. an array of bytes), and it is encoded with protobuf codec, so the
schema shows how to deserialize that binary on-chain data into human readable entries. The off-chain schema has the
same format as .proto files in protobuf serializer (see example below). The package name should always be equal to
onchainmetadata, and the root object should always be named NFTMeta. In order to encode large strings for converting
enum values in multiple languages, one can use JSON transaction object in the single line comments before the enum
value in the enum definition (see the example).

Example for const or variable on-chain that is used by SubstraPunks (shortened version):

package onchainmetadata;
syntax = "proto3";

enum Gender {
/// {"cn": "", "en": "Male", "ru": ""}
Male = 0;
/// {"cn": "", "en": "Female", "ru": ""}
Female = 1;

};

enum PunkTrait {
/// {"cn": "", "en": "Black Lipstick", "ru": " "}
BLACK_LIPSTICK = 0;
/// {"cn": "", "en": "Red Lipstick", "ru": " "}
RED_LIPSTICK = 1;
/// {"cn": "", "en": "Smile", "ru": ""}
SMILE = 2;
/// {"cn": "", "en": "Teeth Smile", "ru": " "}
TEETH_SMILE = 3;
/// {"cn": "", "en": "Purple Lipstick", "ru": " "}
PURPLE_LIPSTICK = 4;
/// {"cn": "", "en": "Nose Ring", "ru": " "}
NOSE_RING = 5;
/// {"cn": "", "en": "Asian Eyes", "ru": " "}
ASIAN_EYES = 6;
/// {"cn": "", "en": "Sunglasses", "ru": " "}
SUNGLASSES = 7;

};

/// This is the root object of the schema, it will always be called "NFTMeta"
message NFTMeta {

required Gender gender = 1;
repeated PunkTrait traits = 2;

}

Example for off-chain schema:

{
"metadata": "https://ipfs-gateway.usetech.com/ipns/

→˓QmaMtDqE9nhMX9RQLTpaCboqg7bqkb6Gi67iCKMe8NDpCE/metadata/token{id}"
}

1.3. JavaScript API 23

Unique Network, Release 0.0.1

Example of data returned from metadata endpoint for token ID 1:

{
"image" : "https://ipfs-gateway.usetech.com/ipns/

→˓QmaMtDqE9nhMX9RQLTpaCboqg7bqkb6Gi67iCKMe8NDpCE/images/punks/image1.png"
}

This protobuf example shows how to decode the substrapunk schema using JavaScript.

Permissions
• Collection Owner

• Collection Admin

Parameters
• CollectionID: ID of collection

• SchemaVersion: enum

setOffchainSchema

Description
Set off-chain data schema. In the initial version of NFT parachain the schema will only reflect image URL. The {id}
substring will be parsed to reflect the NFT id.

For example, the schema string for CryptoKitties will look like this:

https://img.cryptokitties.co/0x06012c8cf97bead5deae237070f9587f8e7a266d/{id}.png

Next version of the token data schema is split into three methods: SetOffchainSchema, SetConstOnChainSchema, and
SetVariableOnChainSchema, as well as a chain variable: SchemaVersion, which will return the value corresponding
to the metadata standard being used. If SchemaVersion is not present in the chain, it means this is still the TestNet 1.0
and there is no on-chain schema yet implemented in it.

The schema must contain the image and page fields, which should use {id} placeholder that will be replaced by wallets
with the actual token ID in order to get the token page and image URLs. Also, there is an optional “audio” field that
contains audio file URL associated with the tokens. The schema will be parsed by 3rd party wallets, but not at the
moment of setting the schema.

Example:

{
“image”: “https://example.com/images/{id}”,
“page”: “https://example.com/nft/{id}”,
“audio”: “https://example.com/audio/{id}”

}

Permissions
• Collection Owner

• Collection Admin

Parameters
• CollectionID: ID of collection

• Schema: String representing the offchain data schema

24 Chapter 1. Contents

https://github.com/UniqueNetwork/unique-docs/tree/master/examples/protobuf.js

Unique Network, Release 0.0.1

setConstOnChainSchema

Description
Set the on-chain schema (string in JSON-schema format) that describes permanent token fields.

This schema describes the serialization of non-changeable token fields. Serialization algorithm depends on the version
of schema selected in setSchemaVersion . Uniue schema uses Google protobuf for serialization, which is described in
setSchemaVersion .

The schema will be parsed by 3rd party wallets, but it is not validated at the moment when it is set.

Example: see example in setSchemaVersion

Permissions
• Collection Owner

• Collection Admin

Parameters
• CollectionID: ID of collection

• Schema: String representing the offchain data schema

setVariableOnChainSchema

Description
Same as Const on-chain schema, except sets the variable schema. Also, requires name and size of each field and is
required to match the total variable data size.

Permissions
• Collection Owner

• Collection Admin

Parameters
• CollectionID: ID of collection

• Schema: String representing the offchain data schema

Getting Data Schemas

In order to get a data schema for the collection, one should use following query: api.query.nft.collection. The response
to the query is the JSON object that contains schemas information in fields OffchainSchema, VariableOnChainSchema,
and ConstOnChainSchema:

{ Owner: 5GrwvaEF5zXb26Fz9rcQpDWS57CtERHpNehXCPcNoHGKutQY, Mode: {

NFT: null

}, Access: Normal, DecimalPoints: 0, Name: [

0

], Description: [

0

1.3. JavaScript API 25

Unique Network, Release 0.0.1

], TokenPrefix: 0x3000, MintMode: false, OffchainSchema: “”, Sponsor:
5C4hrfjw9DjXZTzV3MwzrrAr9P1MJhSrvWGWqi1eSuyUpnhM, SponsorConfirmed: false,
VariableOnChainSchema: “”, ConstOnChainSchema: “”

}

Parameters
• CollectionID: Id of collection

Code Example

await api.query.nft.collection(collectionId);

1.3.9 Ecomonic Models

The Unique Network allows sponsoring user transactions for NFT collections and smart contracts. When collection (or
smart contract) is sponsored, all their users need is to have the Unique wallet and address, but they don’t need to have
any Unique balance on the wallet. This feature removes the extra friction for the end user and creates nice flawless user
expeirence.

setCollectionSponsor

Description
Setting collection sponsor is the 2-step process. This method is the step 1: Set the sponsor address. The sponsor will
need to confirm the sponsorship using confirmSponsorship method before the sponsoring begins.

Permissions
• Collection Owner

Parameters
• CollectionID: ID of collection

• Sponsor: Sponsor address

confirmSponsorship

Description
Setting collection sponsor is the 2-step process. This method is the step 2: Confirm sponsorship. The sponsor needs
to confirm the sponsorship so that the collection owners cannot atack the addresses they are not related with.

Permissions
• Collection Sponsor

Parameters
• CollectionID: ID of collection

26 Chapter 1. Contents

Unique Network, Release 0.0.1

removeCollectionSponsor

Description
Disable sponsoring and switch back to pay-per-own-transaction model.

Permissions
• Collection owner

Parameters
• CollectionID: ID of collection

Enabling Contract Sponsoring (EVM)

Description
In order to enable contract sponsoring on EVM (Ethereum) contract, web3 library needs to be used because EVM
contracts are deployed using ETH RPC interface, so the owner of the EVM contract is an Ethereum address. This short
example demonstrates how to enable sponsoring for a contract with address stored in myContractAddress variable:

import Web3 from 'web3';
...
const helpers = new web3.eth.Contract(contractHelpersAbi as any,
→˓'0x842899ECF380553E8a4de75bF534cdf6fBF64049', {from: caller, ...GAS_ARGS});
await helpers.methods.toggleSponsoring(myContractAddress, true).send({from: owner});
await helpers.methods.toggleAllowlist(myContractAddress, true).send({ from: owner });

Note that helpers.methods.toggleAllowlist call is also included in this example because enabling allow list is required
in order for sponsoring to work (as a security measure). Read more about this below.

Permissions
• Address that deployed smart contract

Parameters
• contractAddress: Address of the contract to sponsor

• enable: Boolean flag to enable or disable smart contact self-sponsoring

enableContractSponsoring (Ink!)

Description
Note: The Ink! smart contracts are currently disabled.

Enable the Ink! smart contract to pay for its own transaction using its endowment. Can only be called by the contract
owner, i.e. address that deployed this smart contract. The sponsoring will only start working after the rate limit is set
with `setContractSponsoringRateLimit-ink`_.

Permissions
• Address that deployed smart contract

Parameters
• contractAddress: Address of the contract to sponsor

• enable: Boolean flag to enable or disable smart contact self-sponsoring

1.3. JavaScript API 27

Unique Network, Release 0.0.1

Settings Contract Sponsoring Rate Limit (EVM)

Description
Set the rate limit for contract sponsoring. The default value for the rate limit is 7200 blocks, i.e. one day. If set to the
number B (for blocks), the transactions will be sponsored with a rate limit of B, i.e. fees for every transaction sent to this
smart contract will be paid from contract balance if there are at least B blocks between such transactions. Nonetheless,
if transactions are sent more frequently, the fees are paid by the sender.

This short example demonstrates how to set sponsoring rate limit of one transaction per 1234 blocks for a contract with
address stored in myContractAddress variable:

import Web3 from 'web3';
...
const helpers = new web3.eth.Contract(contractHelpersAbi as any,
→˓'0x842899ECF380553E8a4de75bF534cdf6fBF64049', {from: caller, ...GAS_ARGS});
await helpers.methods.setSponsoringRateLimit(myContractAddress, 1234).send({from: owner}
→˓);

Permissions
• Address that deployed smart contract

Parameters
• contractAddress: Address of the contract to sponsor

• rate_limit: Number of blocks to wait until the next sponsored transaction is allowed

setContractSponsoringRateLimit (Ink!)

Note: The Ink! smart contracts are currently disabled.

Description
Set the rate limit for contract sponsoring. If not set (has the default value of 0 blocks), the sponsoring will be disabled.
If set to the number B (for blocks), the transactions will be sponsored with a rate limit of B, i.e. fees for every transaction
sent to this smart contract will be paid from contract endowment if there are at least B blocks between such transactions.
Nonetheless, if transactions are sent more frequently, the fees are paid by the sender.

Permissions
• Address that deployed smart contract

Parameters
• contractAddress: Address of the contract to sponsor

• rate_limit: Number of blocks to wait until the next sponsored transaction is allowed

28 Chapter 1. Contents

Unique Network, Release 0.0.1

Sponsor Security

Sponsoring smart contracts is tricky. Users can generate addresses very quickly because creating an address is as
simple as generating a random 64-byte sequence. So, it is really hard to prevent someone from making very many
smart contract calls if they are sponsored. But the sponsor funds need to be protected.

One way to protect funds is to introduce severe rate limits globally, i.e. for all users of the smart contract, but it also
degrades the user experience, especially if there are malicious players who race for free contract calls.

The `setContractSponsoringRateLimit-ink`_ only limits the call rate for each address, so it is designed to be used
with White Lists, enabled by `toggleContractWhiteList`_, when the number of addresses is limited.

So the quick recipe for secure smart contract sponsoring is:

RATE LIMIT + WHITE LIST

The contract owner (address that deployed it) can add user addresses to the white lists using
`addToContractWhiteList-ink`_ method. For a dApp this can be combined with user registration, when the
account is confirmed (or captcha or KYC is passed, for example).

Toggle Contract Allow List (EVM)

Description
In order to enable allow list on an EVM (Ethereum) contract, web3 library needs to be used because EVM contracts
are deployed using ETH RPC interface, so the owner of the EVM contract is an Ethereum address. This short example
demonstrates how to enable allow lists for a contract with address stored in myContractAddress variable:

import Web3 from 'web3';
...
const helpers = new web3.eth.Contract(contractHelpersAbi as any,
→˓'0x842899ECF380553E8a4de75bF534cdf6fBF64049', {from: caller, ...GAS_ARGS});
await helpers.methods.toggleAllowlist(myContractAddress, true).send({ from: owner });

Permissions
• Address that deployed smart contract

Parameters
• contractAddress: Address of the EVM contract

• enable: Boolean that tells to either enable (if true) or disable (if false) the allow list for that EVM smart contract

toggleContractWhiteList (Ink!)

Description
Enable the white list for a contract. If enabled, only addresses added to the white list with `addToContractWhiteList-
ink`_ (as well as the contract owner) will be able to call this smart contract. If disabled, all addresses can call this smart
contract.

Permissions
• Address that deployed smart contract

Parameters
• contractAddress: Address of the contract

1.3. JavaScript API 29

Unique Network, Release 0.0.1

• enable: Boolean that tells to either enable (if true) or disable (if false) the white list for that smart contract

Managing Allow List for EVM Contracts

Description
A user will be able to call the smart contract only if their address is included in the contract allow list.

This short example uses web3 library and demonstrates how to add or remove a user address to/from the smart contract
allow list. The contract address is stored in myContractAddress variable:

import Web3 from 'web3';
...
const helpers = new web3.eth.Contract(contractHelpersAbi as any,
→˓'0x842899ECF380553E8a4de75bF534cdf6fBF64049', {from: caller, ...GAS_ARGS});
await helpers.methods.toggleAllowed(myContractAddress, caller, true).send({from: owner});

Permissions
• Address that deployed smart contract

Parameters
• contractAddress: Address of the contract

• Address to add/remove

• enable: Boolean flag. True means address is included in the allow list and can call the contract. False means
address cannot call the contract.

addToContractWhiteList (Ink!)

Description
Add an address to smart contract white list.

Permissions
• Address that deployed smart contract

Parameters
• contractAddress: Address of the contract

• Address to add

removeFromContractWhiteList (Ink!)

Description
Remove an address from smart contract white list.

Permissions
• Address that deployed smart contract

Parameters
• contractAddress: Address of the contract

• Address to remove

30 Chapter 1. Contents

Unique Network, Release 0.0.1

1.3.10 Governance-only Methods

The methods in this group can only be called by the root of the chain. They are not available for public use and are
only listed for reference.

setChainLimits

Description
Sets some chain limits and starts enforcing them immediately.

• collection_numbers_limit: Total number of collections

• account_token_ownership_limit: Total number of tokens that a single address can own

• collections_admins_limit: Total number of collection admins

• custom_data_limit: The maximum byte-size of token metadata

• nft_sponsor_timeout: The number of blocks between sponsored transfers for NFT tokens

• fungible_sponsor_timeout: The number of blocks between sponsored transfers for Fungible tokens

• refungible_sponsor_timeout: The number of blocks between sponsored transfers for Refungible tokens

Permissions
• Network Root

Parameters
• ChainLimits structure (see the description of parameters above)

1.4 Unity API

NFT Asset for Unity Framework aims to enable Unity developers to work with Unique Network blockchain without or
with just a little knowledge about blockchain.

Unity Framework allows customising the behaviors of any gaming objects by means of writing scripts in C# and
attaching them to any behavior. In order to make scripts reusable, they may be wrapped in a plugin library (e.g.
Windows DLL), which can then be imported in any project. There are many plugins that are currently available
for Unity developers. More information about Unity plugins may be found in Unity 3D documentation: https:
//docs.unity3d.com/Manual/Plugins.html

In order to use an imported plugin, Unity developer will use one of OOP principles called inheritance: The game object
will extend the plugin, which means that gaming object will have some built-in features that come from plugin.

The Developer UI enables following actions:

• Create or import address with private key

• Display wallet balance in the network currency

• Create/Destroy collection

• Show list of collections owned by this wallet

Some features are yet to be tested/added:

• Add/Remove an admin for a collection

• Show list of collection admins

1.4. Unity API 31

https://docs.unity3d.com/Manual/Plugins.html
https://docs.unity3d.com/Manual/Plugins.html

Unique Network, Release 0.0.1

• Create/Transfer/Burn an NFT for a collection

• Set/View collection offchain data schema

For demonstration, please use [these instructions](https://github.com/UniqueNetwork/nft_unity/blob/master/src/
DemoApplication/readme.md)

More details coming soon. . .

1.5 .NET API

The .NET API allows Unique developers to connect their NFTs to .NET applications.

Details coming soon. . .

1.6 Wallet Integration Guide

This document is written for the wallet developers and intends to provide step by step guidance for integrating Unique
and Kusama NFTs into the 3rd party wallets.

1.6.1 Unique

1. User Collections

Step 1 is getting the list of collections, in which user owns tokens. There are two options to get these.

Option 1 - Traversing Events

This PolkadotJS guide explains how to tranverse events in a substrate based blockchain.

The events that we are looking for are Transfer in transfer extrinsic. It has parameters: Collection ID+Token ID, sender
and recipient, which are the wallet addresses that exchanged NFT, and ItemCreated in createItem (Mint) extrinsic,
which contains Collection ID and Recipient (wallet) address.

Option 2 - Manual Input

Sometimes tranversing events may not be the most reliable or quick way to gather the full list of tokens for a user, so
the wallet should allow manual user input for the collection by ID or name. In order to prepare for that input, the wallet
application can read the full list of collections in the Unique network first. Collection IDs are sequential numbers that
start from 1 and go up to the last created collection, which is:

api.query.nft.createdCollectionCount()

Each collection then can be queried with:

api.query.nft.collection(collectionId)

and will contain the Name and Description fields encoded as UTF-16, and TokenPrefix encoded as UTF-8 in response
like this:

32 Chapter 1. Contents

https://github.com/UniqueNetwork/nft_unity/blob/master/src/DemoApplication/readme.md
https://github.com/UniqueNetwork/nft_unity/blob/master/src/DemoApplication/readme.md
https://polkadot.js.org/docs/api/examples/promise/system-events
jsapi.html#transfer
jsapi.html#createitem-mint

Unique Network, Release 0.0.1

{
Owner: 5GrwvaEF5zXb26Fz9rcQpDWS57CtERHpNehXCPcNoHGKutQY,
Mode: {

NFT: null
},
Access: Normal,
DecimalPoints: 0,
Name: [

110,
97,
109,
101,
0

],
Description: [

100,
101,
115,
99,
114,
105,
112,
116,
105,
111,
110,
0

],
TokenPrefix: 0x70726566697800,
MintMode: false,
OffchainSchema: https://example.com/images/{id}.png,
SchemaVersion: ImageURL,
Sponsor: 5C4hrfjw9DjXZTzV3MwzrrAr9P1MJhSrvWGWqi1eSuyUpnhM,
SponsorConfirmed: false,
Limits: {

AccountTokenOwnershipLimit: 10,000,000,
SponsoredMintSize: 4,294,967,295,
TokenLimit: 4,294,967,295,
SponsorTimeout: 14,400

},
VariableOnChainSchema: ,
ConstOnChainSchema:

}

Token prefix is used to display tokens in the wallet. The examples of refixes can be: BTC, ETH, etc.

1.6. Wallet Integration Guide 33

Unique Network, Release 0.0.1

2. User Tokens

Once the list of collections that a user (wallet address) has ever dealt with is ready, reading the list of tokens becomes
a simple task. This query returns the list of user’s tokens in one collection:

api.query.nft.addressToken(collectionId, address)

The return contains the list of token IDs. Return example:

[
5243,
6323,
355,
2888

]

3. Token Details

Token details allow the wallet to get access to token image and decode its metadata into a human readable format.

There are two types of token details: Common (or similarly structured) for all tokens in the collection, and details that
are only relevant for one particular token (like a CryptoKitty name, for example).

Even though images and large metadata will be generally stored off-chain (due to cost and efficiency reasons), Unique
enables 3rd party wallets to access this data without using any 3rd party APIs. The collection contains the Offchain-
Schema field, which contains the schema string. Even though the collection owners can set an arbitrary string in this
field, they are encouraged to use metadata standards in order to be compatible with Unique and 3rd party wallets.
Currently there are two schema versions:

• ImageURL

• Unique

ImageURL is very limited. It only allows to set the URL template like “https://example.com/images/{id}.png”, which
allows replacement of {id} placeholder in order to get the image for the token with a particular ID.

Unique schema is much more flexible. It allows not only to encode image URL templates, but also to set the URL for
the API that stores token off-chain metadata, and define rules about what token on-chain data bytes mean and how to
decode them into a human readable format. The Data Schema section describes how to do it. We encourage wallet
developers to start implementation with ImageURL schema, then proceed to off-chain part of Unique schema, and
finally implement the on-chain part of Unique schema.

Reading token on-chain data is done with a query that depends on the collection type. For NFT tokens, the nftItemList
state variable should be used. For ReFungible collection it is reFungibleItemList.

For example, this query:

api.query.nft.nftItemList(collectionId, tokenId)

returns the NFT information:

{
Owner: 5GrwvaEF5zXb26Fz9rcQpDWS57CtERHpNehXCPcNoHGKutQY,
ConstData: <TOKEN METADATA>,
VariableData: <TOKEN USER DATA>

}

34 Chapter 1. Contents

https://example.com/images
jsapi.html#data-schema

Unique Network, Release 0.0.1

The ConstData field contains the token metadata string that cannot be changed and is set when the token is minted.

The VariableData field (which, by the way, is also described by the schema) contains bytes that can be changed by the
current owner, and usually will be changed by the application, but the wallet may allow users to change this (as long as
the data stays within the schema).

1.6.2 Kusama NFT

TBD

1.6. Wallet Integration Guide 35

	Contents
	Overview
	Getting Started
	Creating Accounts
	Unique TestNet Faucet

	JavaScript API
	Polkadot JS API
	Installation
	Examples
	Opening Connection
	Collection Management
	Collection Properties
	createCollection
	changeCollectionOwner
	destroyCollection
	setVariableMetaData
	addCollectionAdmin
	removeCollectionAdmin
	setPublicAccessMode
	addToWhiteList
	removeFromWhiteList
	setMintPermission
	setCollectionLimits
	setTransferEnabledFlag
	setMetadataUpdatePermissionFlag

	Token Management
	createItem (Mint)
	createMultipleItems
	burnItem
	Getting Token Information

	Token Ownership and Transfers
	Getting BalanceOf
	Getting Address Tokens
	Transfer Checks
	transfer
	transferWithData (not yet available)
	transferFrom
	transferFromWithData (not yet available)
	approve
	setApprovalForAll (not yet available)
	Getting Approvals
	batchTransfer
	batchApproval
	batchTransferFrom
	safeBatchTransfer
	safeBatchTransferFrom

	Data Schema
	setSchemaVersion
	setOffchainSchema
	setConstOnChainSchema
	setVariableOnChainSchema
	Getting Data Schemas

	Ecomonic Models
	setCollectionSponsor
	confirmSponsorship
	removeCollectionSponsor
	Enabling Contract Sponsoring (EVM)
	enableContractSponsoring (Ink!)
	Settings Contract Sponsoring Rate Limit (EVM)
	setContractSponsoringRateLimit (Ink!)
	Sponsor Security
	Toggle Contract Allow List (EVM)
	toggleContractWhiteList (Ink!)
	Managing Allow List for EVM Contracts
	addToContractWhiteList (Ink!)
	removeFromContractWhiteList (Ink!)

	Governance-only Methods
	setChainLimits

	Unity API
	.NET API
	Wallet Integration Guide
	Unique
	1. User Collections
	Option 1 - Traversing Events
	Option 2 - Manual Input

	2. User Tokens
	3. Token Details

	Kusama NFT

